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SUMMARY. For Hypothesis Testing and Model Selection, the Bayesian approach is at-

tracting considerable attention. The reasons for this attention include: i) it yields posterior

probabilities of the models (and not simply accept-reject rules); ii) it is a predictive approach;

and iii) it automatically incorporates the principle of scientific parsimony. Until recently, ob-

taining such benefits through the Bayesian approach required elicitation of proper subjective

prior distributions, or the use of approximations (such as BIC) of questionable generality. In

Berger and Pericchi (1996), the Intrinsic Bayes Factor Strategy was introduced, and shown

to be an automatic default method corresponding to an actual (and sensible) Bayesian anal-

ysis. In particular, it was shown that the Intrinsic Bayes Factor yields an answer which is

asymptotically equivalent to the use of a specific (and reasonable) proper prior distribution,

called the Intrinsic Prior. Indeed, the IBF method can also be thought of as a method for

constructing default proper priors appropriate for model comparisons. In this paper we study

an implementation of the IBF strategy called the Median IBF. This seems to be a simple and

very generally applicable IBF, which works well for nested or non-nested models, and even

for small or moderate sample sizes; some of these situations can cause difficulties for other

versions of IBFs.

1. Introduction

1.1 Motivation and notation. The following is a slight modification of a principle
introduced in Berger and Pericchi (1996):

AMS (1991) subject classification. 62F15, 62F03, 62A15
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Principle 1:Testing and model selection methods should correspond, in some
sense, to actual Bayes factors, arising from reasonable default prior distributions.

This principle provided the motivation for the development of Intrinsic Bayes
Factors (IBFs). In Berger and Pericchi (1996), several versions of the IBF
were introduced, including the Arithmetic (AIBF), Geometric (GIBF), Median,
Trimmed, Expected, and Encompassing IBFs, but the primary emphasis was
on the AIBF since it seemed best from the viewpoint of the above principle in
the situation primarily studied, that of nested model comparisons. Scenarios in
which the other IBFs are attractive were, however, discussed.

The reaction to the variety of IBFs that was presented was not entirely
enthusiastic. Those who had been happy with use of BIC were put off by the
additional complication of IBFs and, especially, with the need to use different
IBFs in different scenarios. In addition, the papers of Bertolino and Racugno
(1997) and O’Hagan (1997) demonstrated some of the difficulties that might be
encountered in (casual) use of certain of the IBFs. These difficulties included
the following:

1. The AIBF does not have multiple model coherence.

2. The AIBF and GIBF might be unstable with respect to small changes in
the underlying improper priors or the data, particularly for small sample sizes.

3. The more complex model should be placed in the numerator of the AIBF.
However, in some cases there is a difficulty in recognizing which is the more
complex model, or all models have the same level of complexity.

4. Often, when comparing non-nested models, there is no natural encom-
passing model, i.e. , no natural model in which the models under study are
nested. An encompassing model is required by the AIBF for non-nested models,
except in situations where there is a group structure, such as in comparison of
location-scale models.

5. The trimmed versions of the AIBF and GIBF have an extra parameter,
α, indicating the degree of trimming that is chosen; this might be difficult to
assess.

To address these concerns, we herein propose the Median IBF (already in-
troduced in Berger and Pericchi, 1996), as a single implementation of the IBF
strategy. We will put the Median IBF to the test in very different, and difficult,
situations and show that it overcomes the aforementioned difficulties. While we
do not feel that the Median IBF is the optimal IBF for each situation, it appears
to be a good IBF in virtually any situation, and hence should have great appeal
for those who want a single model selection strategy.

We begin with some needed notation. Suppose that we are comparing Models
M1,M2, ...., MJ , for which the densities of the data x = (x1, . . . , xn) and the de-
fault priors for unknown parameters θj are fj(x|θj) and πN

j (θj), respectively, j =
1, ..., J . Then the marginal density of the observations under Model Mj and for
the default prior is
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mN
j (x) =

∫
fj(x|θj)πN

j (θj)dθj .

The (unscaled) Bayes Factor of Mj to Mi with respect to the default priors is
then

BN
ji (x) =

mN
j (x)

mN
i (x)

.

Denote by x(l) any minimal training sample, i.e., a subset of the sample x
such that 0 < mN

j (x(l)) < ∞ for all Mj , and no subset of it obeys that property.
Similarly, denote by x(−l) the remaining observations in x. For minimal training
samples, the posterior distributions πN

j (θj |x(l)) are proper, and using these as
“trained” priors results in (well scaled) Bayes Factors, based on the x(−l),

Bji(l) =
mj(x(−l)|x(l))
mi(x(−l)|x(l))

,

where

mk(x(−l)|x(l)) =
∫

fk(x(−l)|θk, x(l))πN
k (θk|x(l))dθk, k = j, i.

Notice that, if all the factors are well defined, this simplifies to

Bji(l) = BN
ji (x)BN

ij (x(l)). . . . (1)

The Intrinsic Bayes Factors involve some form of averaging (with respect
to l) of the Bji(l) or mk(x(−l)|x(l)). The Arithmetic and Geometric IBF’s are,
respectively, the Arithmetic and Geometric averages of the Bji(l). In this article,
we are going to study the following two versions of the Median IBF.

The first will be called the Median IBF, and is simply the natural

BM
ji = MED[Bji(l)],

where MED indicates the median. The second version that will be studied is
the Ratio of Medians IBF, that is

BRM
ji =

MED[mj(x(−l)|x(l))]
MED[mi(x(−l)|x(l))]

.

Both versions automatically obey the coherency requirement that BM
ij = 1/BM

ji ,
but only the second version is automatically coherent across two or more models.
This, and that it is somewhat simpler when comparing several models, are the
main strengths of BRM . Its main disadvantage arises from the fact that it
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might not be a Bayes Factor from a real training sample (as is BM ), since the
medians in the numerator and denominator are not necessarily obtained from
the same training sample. As a consequence, BRM

ji is not necessarily invariant
with respect to monotonic transformations of x. Neither of these problems with
BM or BRM are likely to be significant in practice, since training samples at
which the medians are obtained will often be reasonably similar across models.
Also, we will see that the two versions are typically quite close in value.

Before beginning this study, it is useful to give a general overview of the
different default Bayes Factors (BF’s) that have been proposed, together with a
useful classification of BF’s.

1.2 Resampling and Sampling Bayes Factors. A convenient taxonomy of
Bayes Factors is into the two classes Sampling BF’s and Resampling BF’s. In
what follows we briefly enumerate some of the BF’s that lie in each class and
some of their properties.

Sampling Bayes Factors: To this class belong the Bayes Factors that depend
only on minimal sufficient statistics, and that do not divide the original sample
into sub-samples (such as training samples or discrimination samples). To this
group belong (among others): 1) Jeffreys’ Conventional Prior BF’s; 2) BIC,
3) Smith and Spiegelhalter’s Global Bayes Factors, 4) Fractional BFs, and 5)
Expected Intrinsic BF’s and Bayes Factors using Intrinsic Priors. Sampling BF’s
are simpler computationally and tend to obey accepted principles such as the
Likelihood Principle and the Sufficiency Principle.

Resampling Bayes Factors. This group is formed from the BF’s that utilize
training samples from the original sample, so as to allow use of improper default
prior distributions. To this class belong (among others): 1) The original Intrinsic
BF’s, i.e., Arithmetic, Geometric and Median IBF’s, and 2) Bayesian Cross
Validation procedures, which typically employ maximal training samples.

Resampling BF’s do not obey the Sufficiency Principle (since training samples
are rarely functions of the sufficient statistic) and are typically computationally
more intensive than sampling BF’s. They tend to more closely follow Princi-
ple 1, however; see Berger and Pericchi (1997b) for some indications of this.
Furthermore, there are indications that Resampling BF’s might better adapt to
unforeseen structures of the data, such as those arising from a misspecification
of the candidate models. For one example of this, see Example 6 in Berger and
Pericchi (1997b). Also, see Key, Pericchi and Smith (1997) for developments,
applications and further motivations of resampling BF’s, therein called “Global,
Local and Comprehensive Divergences.” This motivates our interest in exploring
a default BF which is both a resampling BF and is not overly sensitive to small
perturbations in the data or default priors.
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2. Putting the Median IBF to the Test

2.1 Example 1: Separate models of equal dimension for discrete data. Poisson
versus Negative Binomial. Suppose that a random sample has been generated
from one of the following models:

M1 : Po(x|λ) = exp(−λ)
λx

x!
, λ > 0.

M2 : NegBin(x|1, θ) = θ(1− θ)x, with 0 < θ < 1.

Now consider the family of priors, respectively, for the above two models:

π1(λ) = λ−α and π2(θ) = θ−β(1− θ)−γ ,

where all α, β and γ belong to the interval [0, 1]. This example appears in
Bertolino and Racugno (1997), henceforth denoted as BR (1997). Incidentally,
this is one of Cox’s examples in his original classical paper on Testing Separate
Hypotheses.

There are many points to this example, but the most important are: i) These
are models of equal dimension, and thus it is not clear which should be placed in
the numerator of the Arithmetic IBF, and ii) The data is discrete and thus the
number of training samples might change dramatically for different improper
priors.

BR (1997) considers two different (small) samples which share the same
Maximum Likelihood Estimators under both models:

x(1) = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2) and x(2) = (0, 0, 0, 0, 1, 1, 2, 2, 3, 3).

Furthermore, BR (1997) considers quite different values of the prior hyperpa-
rameters, namely (α = β = 1, γ = 0.5), (α = 1, β = γ = 0.5), (α = β = γ = 1),
and (α = β = γ = 0). (Note that we would have recommended using “refer-
ence priors”; here that would correspond to the “Jeffreys priors”, being given
by (α = γ = 0.5, β = 1). This would have eliminated most of the reported
problems.) Also considered in BR (1997) were slight variations of α, say from
1 to 0.99, which change the training samples in a fundamental manner, since a
0 observation cannot be a training sample when α = 1, but can be a training
sample when α = 0.99. In Tables 1 and 2 we present the Arithmetic IBF and
the Median IBF for the various priors and two samples, respectively.
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Table 1. arithmetic and median IBFs for the first sample.

α β γ BA
12(x

(1)) BM
12 (x(1)) BA

21(x
(1)) BM

21 (x(1))

1 1 0.5 33.200 31.95 0.0303 0.0313

0.99 1 0.5 34.575 32.15 0.0293 0.0311

1 1 1 35.198 35.21 0.0284 0.0284

0.99 1 1 35.379 35.46 0.0283 0.0282

1 0.5 0.5 28.403 28.41 0.0352 0.0352

0.99 0.5 0.5 28.548 28.57 0.035 0.035

0 0 0 26.715 29.67 0.0404 0.0337

Table 2. arithmetic and median IBFs for the second sample.

α β γ BA
12(x

(2)) BM
12 (x(2)) BA

21(x
(2)) BM

21 (x(2))

1 1 0.5 1.1315 1.06 0.981 0.9398

0.99 1 0.5 0.6278 0.89 15.519 1.1197

1 1 1 0.9777 0.98 1.0228 1.0228

0.99 1 1 0.9766 0.97 1.0240 1.0257

1 0.5 0.5 0.7725 0.79 1.2956 1.2675

0.99 0.5 0.5 0.4758 0.79 13.364 1.2585

0 0 0 1.2863 0.82 1.6979 1.2128

The main messages of this example concerning the Arithmetic IBF are that,
for the troublesome sample x(2): i) the Arithmetic IBF is quite sensitive to
“slight” variations of the improper prior; and ii) it does matter which of the two
models is placed in the numerator of the Arithmetic IBF. For the Median IBF,
however, neither of these two difficulties arises. The Median IBF is extremely
insensitive to variation of the improper priors and is, of course, coherent in the
sense that BM

21 = 1/BM
12 . Also, for the first sample, for which the Arithmetic

IBF behaves very regularly, the Median IBF is quite close to the Arithmetic
IBF. Indeed, in this example the Median IBF deviates from the Arithmetic IBF
only if the latter shows irregular behavior. We do not separately present results
for the Median IBF and Ratio of Medians IBF, since they coincide exactly in
this example.
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2.2 Example 2: Only one informative observation. There is a group of ex-
amples with the theme that only one of the observations is informative for both
the discrimination of models and estimation of parameters. We analyze two of
these examples.

Example 2.2.1: Nested hypotheses for discrete data. This example appears
in O’Hagan (1997). It involves a hypothesis test of a Bernoulli parameter θ =
P (X = 1|θ). It is desired to test

M0 : θ = θ0 versus M1 : θ 6= θ0.

We will be concerned below with θ0 = 0, in which case any nonzero Bernoulli
observation clearly establishes that M1 is true.

Suppose, now, that the improper prior πH(θ) ∝ θ−1(1 − θ)−1 is to be used
with some IBF, but that the Bernoulli observations consist of all zeroes except
for one 1. Then, it is easy to see that any minimal training sample must contain
exactly one 0 and one 1, and thus the remaining data x(−l), which will be used
to compute the Bayes factor corresponding to the prior based on the training
sample, will contain only zeroes. No IBF will then conclude that M1 is true for
sure, as is desired when θ0 = 0.

The Median IBF (or any other version of the IBF) is less sensitive to the
difficulty with πH if at least two ones are observed. If r ones are observed, all
training samples will still have one 0 and one 1, and all IBFs will then equal

BI
10 =

Γ(r)Γ(n− r)
Γ(n)θr

0(1− θ0)n−r
θ0(1− θ0).

This will be ∞ as long as r > 1 (when θ0 = 0), so that the IBFs will correctly
conclude that M1 is true.

It should also be mentioned that the improper prior πH is quite unreasonable.
Again, we always recommend use of the reference prior (here, also, the Jeffreys
prior), which is πJ(θ) = 1

π θ−1/2(1 − θ)−1/2; the Uniform prior is also quite
reasonable for a Bernoulli parameter. Since these priors are proper, a minimal
training sample would be empty, and so IBFs are just the original Bayes factors.
For example, if the Jeffreys prior is assumed, and only one 1 is observed, then
the Bayes Factor is

BπJ

10 =
Γ(n− 1/2)

Γ(1/2)Γ(n)θ0(1− θ0)n−1
,

which is ∞ for θ0 = 0, as it should be.
Example 2.2.2: ested hypotheses with continuous data. This is a simplified

version of an example that also appears in O’Hagan (1997). Suppose that M1

states that the Xi are a random sample from a Normal Distribution with mean
0 and known variance σ2

0 , while M2 is the same except that observation Xj is
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distributed as a Normal but with mean shifted by an unknown δ. Since Xj is
the only informative data about the parameter δ, it will be contained in any
training sample, and thus the Resampling IBF’s will all equal one (no matter
how large the ‘outlier’).

It is indeed clear that one cannot use a resampling IBF if there is only one
relevant sample. However, one can still use the intrinsic Bayes factor approach
to determine Intrinsic Priors, which can then be used directly. The resulting
procedure will be to reject M1 in favor of the outlier model when the standardized
residual of xi is greater than a threshold value; this agrees with standard practice
and has the added attraction that the value of the threshold is given in terms of
(easy to interpret) Bayes factors (or posterior probabilities) for the intrinsic prior.
Note that derivation of the intrinsic prior is essentially based on ‘imagining’ a
very large sample (of ‘outliers’) and deriving the intrinsic prior asymptotically;
hence the size of the actual sample becomes irrelevant.

2.3 Example 3: Separate models of different dimensions for continuous data.
This example also appears in Bertolino and Racugno (1997). We compare the
Exponential versus the LogNormal model (an example analyzed in Berger and
Pericchi, 1996, with different data), using the usual reference priors and with
the following small samples:

x(1) = (0.7, 1, 1, 1, 1, 1, 2, 3, 4, 5), x(2) = (0.7, 0.999, 0.9999, 1, 1.0001, 1.001, 2, 3, 4, 5).

The second sample is only a slight variant of the first (“a more accurate exper-
iment”), but the difference can have a significant effect because the number of
proper training samples for each of the samples is quite different. This happens
because a minimal training sample is any pair of different observations, and the
first sample has 5 equal observations, while the second sample has none. As a
consequence, for the second sample there are 45 training samples, but for the
first sample 10 of these are not training samples. (The “near singularity” of
these 10 training samples for the second data set is also a potential problem.)
Avoiding these potential difficulties was the reason that Berger and Pericchi
(1996) proposed use of α-trimmed and Median IBFs.

In BR (1997), the Arithmetic IBFs are computed, separately, as BA
21 and BA

12,
although it is natural to think that M2 is more complex than M1; indeed, Berger
and Pericchi (1997a) show that this is so, in the sense that the expectation of the
corrections for BA

21 are finite, while this is not so for BA
12. Hence the prescription

in Berger and Pericchi (1996) of defining BA
12 as the inverse of BA

21 should have
been used.

The results for this example are displayed in Table 3.
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Table 3. arithmetic and median IBFs for exponential versus lognormal.

Sample BA
12 BM

12 BRM
12 BA

21 BM
21 BRM

21

x(1) 0.8475 0.6568 0.688 1.3929 1.5225 1.4534

x(2) 345.71 0.7974 0.643 1.0837 1.2541 1.5559

Table 3 is revealing, and suggests the following comments:

1. The pathological behavior of BA
12, for x(2), is evident but, again, these

should have been calculated as BA
12 = 1/BA

21. Thus the correct values of BA
12

for the first and second samples, respectively, are 0.7179 and 0.9228, instead of
0.8475 and 345.71. The crazy behavior vanishes if the correct definition of the
Arithmetic IBF is applied.

2. Nevertheless, the observation in BR (1997), that there are cases when
there is no clear “more complex model”, is important to note. For an automatic
implementation of the IBF strategy, it is useful to have a tool which does not
depend on which model is more complex, and that is coherent, in the sense that
B21 = 1/B12. The Median IBF, in its two version, obeys these requirements,
and automatically avoids the pathological behavior of the direct calculation of
BA

12 for the second sample.

3. The two versions of the Median IBF are quite stable for the two samples
and are also quite close to each other.

2.4 Example 4: Separate scale models and different improper priors. This
is the final example in BR (1997). Here there is a comparison between three
separate scale models:

M1 : Normal, M2 : Laplace and M3 : Cauchy,

all with location assumed known. Let us denote, respectively, by σ, ρ and τ
the scale parameters under each of the three models. BR (1997) considers the
following family of improper priors, indexed by the hyperparameters α, β and γ:

π1(σ) = σ(2α−3), π2(ρ) = ρ(β−2), and π3(τ) = τ (1−2γ).

This is an example of continuous separate (i.e., non-nested) models of equal
complexity, and so it is not clear which to place in the numerator of the Arith-
metic IBF. BR (1997) chooses different values of the hyperparameters to show
that the Arithmetic IBF changes with the priors. Also, for certain values of
the hyperparameters, the Arithmetic IBF can be incoherent, in the sense that
BA

12 > 1 and BA
21 > 1 simultaneously.

Note, first, that, for the very wide class of problems on which a group struc-
ture is acting, e.g. location or location-scale models, there is a very strong
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reason to use the reference prior; see Berger and Pericchi (1996, 1997a,1997b)
and Berger, Pericchi and Varshavsky (1996). Indeed, a remarkable simplifica-
tion then occurs: for scale parameter models, this simplification (noting that a
minimal training sample is a single observation) is that

mN
j (xl) =

1
2|xl − µ0| , j = 1, 2, 3. . . . (2)

This fact implies an enormous simplification in IBFs, since then all the training
sample ‘corrections’ cancel out. This also establishes that the reference priors are
“well calibrated” for this problem. Thus, using reference priors for the problem
implies that all versions of IBFs coincide with the Bayes Factor with respect to
the non-informative priors, i.e.,

BI
ij = BN

ij . . . . (3)

For non reference priors, relationships (2) and (3) are no longer true.
In spite of our strong preference for reference priors in this problem, we put

the Median IBF to the test for other improper priors as well. The reference
priors, proportional to the above prior with (α = β = γ = 1) in the given
parameterizations, are considered, as well as the perturbations (α = 1, β =
0.5, γ = 1.25) and (α = 1, β = 0.75, γ = 0.75). We only present this subset of
the values considered in BR (1997), since the behavior for other values is similar.

As seen from (3), the Arithmetic and Median IBF coincide for the reference
priors, but they differ quite markedly for other priors. We do not think that the
Arithmetic IBF should be used for separate models without encompassing or
without a matching relationship such as (2), but we present the corresponding
numbers in the next Table for sake of comparison. Table 4 considers the same set
of data used in BR (1997), namely xi−µ0 = (−1,−0.4,−0.2, 0.001, 0.01, 0.1, 0.3, 1).
Only the Median IBF is presented, because the Ratio of Medians IBF was quite
similar. For instance, its corresponding values for the first non-reference prior,
i.e., the second row in the table, and following the order of the Median IBF in
the table, were 2.31, 1.48 and 0.64. Notice, also, that the values obtained for the
Median IBF are almost exactly coherent across the three models. (Of course,
the Ratio of Medians IBF would achieve this automatically.)

Table 4. median and arithmetic IBF for separate scale models,
with reference and non reference priors.

α β γ BM
21 BA

21 BA
12 BM

31 BA
31 BA

13 BM
32 BA

32 BA
23

1 1 1 2.64 2.64 0.38 1.88 1.88 0.53 0.71 0.71 1.41

1 0.5 1.25 2.38 2.44 1.37 1.52 1.56 2.14 0.64 0.64 1.57

1 0.75 0.75 2.59 2.42 0.56 1.27 4.09 0.82 0.49 4.76 2.53
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As anticipated, the Arithmetic IBF is unstable for the last non-reference
prior (third row) and, for both non-reference priors, the Arithmetic IBF and
its reciprocal might be simultaneously bigger than one. (We do not show the
reciprocal of the Median IBF, since BM

ij = 1/BM
ji automatically). On the other

hand, the Median IBF is extremely stable and the same ranking of models is
obtained for both priors.

2.5 Example 5: Separate regressions. In this example, we study Hald’s
Regression Data, typically analyzed using normal regression models. There are
four potential regressors, denoted by 1,2,3,4, and a constant included in all
models and denoted by c. Let us compare the following non nested models:

M2 : {c, 1, 2} versus M4 : {c, 1, 4} .

Berger and Pericchi (1996) recommended the encompassing approach, whereby
these two models are compared first against the biggest possible model M0 :
{c, 1, 2, 3, 4}, computing the Arithmetic IBFs B0A

0j for j=2 and 4, and then form-
ing the encompassing Arithmetic IBF by

B0A
24 = B0A

04 /B0A
02 ,

with the reciprocal of this expression being B0A
42 . In order to do this, the training

sample sizes need to be large enough to accommodate the encompassing model.
Here, for instance, the minimal training sample size, using reference priors and
the encompassing approach, are 6; a direct comparison between M2 and M4

would only require a training sample of size 4.
The goal here is to compare the Median IBF, for a direct comparison of

M2 and M4 , with the Arithmetic and Geometric IBFs under the encompassing
approach. We use reference priors, i.e., the reciprocal of the standard deviation.
For the Geometric IBF, we used a training sample of size 6 also, viewing it as an
‘encompassing’ Geometric IBF. For the Median IBF, however, we only used a
training sample size of 4, since it is a direct comparison. The answers obtained
via all approaches are quite similar, especially considering that there was a very
small sample size and a high degree of multicolinearity between the covariates
of the two models.

Table 5: hald’s data; separate regressions;
median and encompassing IBF’s.

BMR
24 BRM

24 B0A
24 B0G

24

3.78 2.87 2.55 2.5

2.6 Example 6: Nested regressions. We again consider Hald’s data from the
previous example, but now do nested comparisons of the full model M0 to M2
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and to M4 ; the minimal training sample size is again 6. We consider the effects
of two (very) different priors, the reference prior and the Jeffreys prior, denoted
by πr and πj , respectively.

Table 6. hald’s data; nested regressions; median, geometric and arithmetic IBF’s.

Prior BA
02 BG

02 BM
02 BRM

02 BA
04 BG

04 BM
04 BRM

04 BA
24 BG

24 BM
24 BRM

24

πr .18 0.08 .20 .17 .46 0.20 .47 .44 2.55 2.5 2.32 2.60

πj .16 0.004 .026 .016 .41 0.01 .09 .04 2.55 2.49 3.40 2.73

For the reference prior, which we recommend, the Median IBFs are quite close
to the Arithmetic IBF. However, the (encompassing) Arithmetic IBF is clearly
the most stable with respect to change in the prior. This, in part, is why we
feel that the Arithmetic IBF is most suitable for nested comparisons, at least
when comparing just two nested models. For more complex comparisons that
involve several models, and for non-nested comparisons, the Median IBF has a
clear advantage, being very safe to use, especially when coupled with reference
priors. We do not recommend the Median IBF for nested comparisons with the
Jeffreys prior. Note that the Geometric IBF seems to be too small for all priors,
but particularly for the Jeffreys prior.

2.7 Example 7: Proschan data. Here we reanalyze the Proschan Data,
which consists of 30 failure times of the air conditioning system of an airplane.
As in BP (1996), we compare the models

M1 : Exponential, M2 : LogNormal, and M3 : Weibull,

using both the reference priors (denoted by πr) and Jeffreys priors (denoted by
πj).

Let Aij, Gij and Mij, denote the Arithmetic, Geometric and Median IBF,
respectively, for Model i over Model j. The primary goal here is to study the
coherence, across models, of the Median IBF. (We do not give the Ratio of
Medians IBF because it is automatically coherent across models.)

Table 7: proschan data, median, geometric and arithmetic IBF.

Prior A21 G21 M21 A31 G31 M31 A32 G32 M32 A23 G23 M23

πr .37 .33 .42 .26 .23 .29 .7 .7 .7 1.42 1.42 1.42

πj .37 .33 .42 .25 .15 .29 .66 .46 .61 3.93 2.15 1.65

From Table 7, it can be concluded that the Median IBF is less sensitive to changes
in the prior than the other IBFs. Also, it is very close to being completely
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coherent across models. For example, we can compute Mij directly, or we can
calculate it via Mkj/Mki, which we call M*ij. Table 8 presents the results of
these two ways of computing the Bayes factors.

Table 8: almost coherence of the median IBF for three models.

Prior M31 M*31 M32 M*32 M21 M*21

πr .29 .30 .7 .69 .42 .41

πj .29 .25 .61 .69 .42 .47

The Median IBF is almost exactly coherent, especially for reference priors. The
Geometric IBF also has good behavior here, except that it is slightly more
sensitive than the Median to changes in the priors. The same could be said
about the Arithmetic IBF, except that the behavior of BA

23 with the Jeffreys
prior is quite different than that of the reciprocal of BA

32.

3. Intrinsic priors

The extent to which the Median IBFs satisfy Principle 1 is clearly of interest.
Intrinsic priors can exist for either, as the following two examples show.

3.1 Location-Exponential testing. Suppose X1, X2, ..., Xn are i.i.d. with den-
sity

f(xi|θ) = exp[−(xi − θ)] I(θ,∞)(xi),

where “I” denotes the indicator function. It is desired to compare

M1 : θ = θ0 versus M2 : θ 6= θ0,

employing the usual non-informative prior πN
2 (θ) = 1. Computation yields

mN
1 (x1, x2, ..., xn) = exp(nθ0 − S)I(θ0,∞)(xmin),

mN
2 (x1, x2, ..., xn) =

1
n

exp(nxmin − S),

where S =
∑n

i=1 xi and xmin = min[x1, ..., xn]. Hence,

BN
21(x) =

{
1
n exp[n(xmin − θ0)] if xmin > θ0

∞ if xmin < θ0.

Any single observation is a minimal training sample, and the resulting “trained
priors” are
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πN
2 (θ|xi) = exp(θ − xi)I(−∞,xi)(θ). . . . (4)

Using these to compute the IBF’s yields, for the Arithmetic and Median versions,

BA
21 =

{
1
n exp(n(xmin − θ0))[ 1

n

∑n
i=1 exp(θ0 − xi)] if xmin > θ0

∞ if xmin < θ0

BM
21 =

{
1
n exp(n(xmin − θ0)) exp(θ0 −MED[xi]) if xmin > θ0

∞ if xmin < θ0.

(A technical point is in order: The simplifying formula (1) does not apply here
due to the presence of terms of the form ∞ · 0; hence one must compute the
IBF’s using the “trained priors” in (4).)

As n →∞, the {θ < θ0} are irrelevant, since then xmin < θ0 (and the IBF’s
equal ∞) with probability one. As n →∞ for θ > θ0,

1
n

n∑

i=1

exp(θ0 − xi) → Eθ[exp(θ0 −X)] =
1
2

exp[−(θ − θ0)],

and also

exp(θ0 −MED[xi]) → exp(θ0 − [θ + log(2)]) =
1
2

exp[−(θ − θ0)].

Since πN (θ) = 1 and M1 is nested in M2, equation (49) in Berger and Pericchi
(1996) shows that the intrinsic priors for both BA

21 and BM
21 are

πI
2(θ) =

{
arbitrary θ < θ0
1
2 exp[−(θ − θ0)] θ > θ0.

Note that
∫∞

θ0
πI

2(θ)dθ = 1
2 , so that proper intrinsic priors clearly exist which

assign equal mass to {θ < θ0} and {θ > θ0}.
3.2 Scale parameter problems. Suppose X1, ..., Xn are i.i.d. with density of

the form

f(xi|θ) =
1
θ
g(

xi

θ
),

for xi > 0 and θ > 0, where g(.) is monotonic. It is desired to compare

M1 : θ = θ0 versus M2 : θ 6= θ0,

utilizing the non-informative prior πN
2 (θ) = 1/θ. Clearly a single observation,

xi, is a minimal training sample, and

BN
12(xi) =

1
θ0

g(
xi

θ0
)/

∫ ∞

0

1
θ2

g(
xi

θ
)dθ,
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which can be proved to be equal to

BN
12(xi) =

1
θ0

g(
xi

θ0
)/(

1
xi

),

from which expressions for the various IBF’s follow directly.
It is somewhat difficult to study intrinsic priors for the Median IBF, but the

Ratio of Medians IBF is

BRM
21 = BN

21 ·
MED[θ−1

0 g(xi/θ0)]
MED[1/xi]

,

which is equal to

BN
21 ·

θ−1
0 g(MED[xi]/θ0)

1/MED[xi]
,

using the monotonicity of g(·). As n → ∞, it can be proved that MED[xi] →
θ m, where m is the median of f when θ = 1. Hence, using expression (49) in
Berger and Pericchi (1996), the intrinsic prior is determined as

πI
2(θ) =

θ−1
0 g(θm/θ0)

1/(θm)
· 1
θ

=
m

θ0
· g(

θ

θ0/m
),

which is clearly proper. Furthermore, the prior probability that {θ < θ0} equals
0.5, so that the intrinsic prior is admirably “balanced”.

As a specific illustration, consider the usual Exponential model, f(xi|θ) =
θ−1 exp(−xi/θ). It is desired to test M1 : θ = θ0 versus M2 : θ 6= θ0 and
the nonnformative prior πN (θ) = 1/θ is employed. Then the Ratio of Medians
Intrinsic prior is

πI
2(θ) =

log 2
θ0

exp(−θ log 2/θ0),

an Exponential prior with mean parameter θ0/ log 2.
It is unfortunately, rather rare for the Median IBFs to have a proper intrinsic

prior; more typical is the situation in the following example.

3.3 Multivariate normal testing. Suppose X1, ..., Xn are i.i.d. from the p-
variate normal distribution with mean vector θ and identity covariance matrix.
It is desired to compare

M1 : θ = 0 versus M2 : θ 6= 0.

Utilizing the standard noninformative prior, πN
2 (θ) = 1, a minimal training

sample is a single vector xi, and
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BN
12(xi) = (2π)−p/2 exp(−|xi|2/2).

The Arithmetic IBF and Median IBF are

BA
21 = BN

21 · (2π)−p/2 1
n

n∑

i=1

exp(−|xi|2/2),

BM
21 = BN

21 · (2π)−p/2 exp(−MED[|xi|2]/2).

As n →∞,

1
n

n∑

i=1

exp(−|xi|2/2) → Eθ[exp(−|xi|2/2)] = 2−p/2 exp(−|θ|2/4),

MED[|xi|2] → p +
1
6
(
1
p
− 5) + |θ|2(1− 1

6p
) (approximately).

(The last expression is, for our purposes, a reasonably accurate approximation
to the median of the corresponding non-central chi square distribution.) It is
straightforward to see that the resulting intrinsic prior for the Arithmetic IBF,
πA

2 (θ), is a Np(0, 2I) density, while that for the Median IBF is

πM
2 (θ) = exp(−1

2
[p +

1
6
(
1
p
− 5)]) · (2π)−p/2 exp(−1

2
(1− 1

6p
)|θ|2).

This last prior is not proper, integrating to approximately Kp = (1.09) exp(− 1
2 [p+

1
6 ( 1

p − 5)]), values of which are given in Table 9 for various p. Also given in the
Table are the ratios of the intrinsic priors evaluated at zero, for the Median IBF
and the Arithmetic IBF.

Table 9.

p 1 2 3 4 5 10

Kp 0.93 0.58 0.36 0.22 0.13 0.01

πM
2 (0)/πA

2 (0) 1.20 1.07 0.93 0.80 0.69 0.32

The numbers in Table 9 accurately reflect our experience. For comparing
models of similar dimension, the intrinsic priors for the Median IBF fail to be
proper only by a moderate constant but, for large dimensional differences, the
constants can be much smaller than one. This discrepancy is tempered, however,
by the fact that πM

2 (θ) will typically have a smaller spread than will πA
2 (θ). One

consequence is that the values of the two priors at zero are quite similar for
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moderate p, and the values at zero are often the most influential features of the
priors in determination of the Bayes Factor. This probably explains why, in
application to nested models, the Arithmetic IBF and Median IBF tend to give
quite similar answers, at least for reference priors.

4. Conclusion

For comparison of two nested models with a moderate amount of data, we
would still recommend use of the Arithmetic IBF (or an expected version), be-
cause of its guaranteed correspondence with a (sensible) proper intrinsic prior.
If, however, the data set is small, or a single default Bayes factor methodology
is desired, we would recommend the Median IBF. The amount by which the
Median IBF “violates” Principle 1 appears to be quite modest in practice, and
its enormous range of applicability and stability with respect to small training
samples would argue for its general use. This is especially so if it is combined
with reference priors.
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